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1. Introduction. This study presents an exact solution of the first 

fundamental problem of the theory of elasticity for infinite space, con- 

taining a flat cut covering the outside of a circle (Fig. 1). 

When solving problems of this type, it is convenient to introduce side 

by side with rectangular coordinates (x, y, z) toroidal coordinates 

(O,<a<oo, -n&@,<+n, 0 ( (I, < 2 fr ) , using relations 

ash acosq, 
z= cha+eos@’ 

ashasinrp 
yLI; cha+cosfi’ 

a sin @ 
’ = ch a + cos P, (1.1) 

In this case the edges of the cut are coordinate surfaces p = 2. R, the 

inside of the circle of radius a is the surface /3 = 0, and the dividing 

circumference r = a is the line a = 00. 

To solve this problem we will mske use of the Papkovich-Neuber re- 
presentation of elastic displacements (u, V, w) through four harmonic 
functions Q*(k = 0, 1, 2, 3) 

2[kU _- - -g- -f- 4 (1 - v) a,, 21*v == --- -!& + 4 (1 - v) CD, 

(1.2) 



Elastic equilibrium of 4 body with 4 circular crack 135 

( p is the shear modulus, v is Poisson’s ratio). 

We will also give the expressions for the stresses (oz, rzx , r yz), 
which are known on the boundaries of the cut: 

Tzz = g + 2 (1 - v) 2?!$ ) =gz == g + 2 (1 - y) ?$ (1.3) 

~-(1-2v)cD,-~~-((s~+y~+z~), CR* =q 

In what follows the problem will be split into two parts: one symmetric 

and one anti-symnetric (with respect to the surface z = 0); in each case 

it is obviously possible to lay down certain conditions at the surface 

/3 = 0 and consider the problem for the upper half-space only. 

2. Symmetric problem*. In the case of a state of stress symmetric 

with respect to the coordinate z, the equilibrium of the upper half-space 

(0 ( /3< n) can be considered under the following boundary conditions: 

w Ipeo I= 0, kT ;p=o - -- 0, =yz p=o - -0 (2-l) 
01 If+? = 0 (a, y), ~2, lp=rr == TX (a, cp), =yr Ip=n = Ty (a, ‘p) (2.2) 

Making use of the arbitrary character of one of the harmonic functions 

contained in the Papkovich-Neuber solutions, to conditions (2.1)-(2.2) we 

will add two more additional conditions: 

0 Ip=o = 0, 0 !p= y= 0 (2.3) 

Hence, such of boundary conditions (2.1)-(2.21 as are connected with 
shear stresses invaediately enable us to formulate separate boundary con- 
ditions for harmonic functions a1 and a,: 

aa 8% 
az @=I) = --z I p=o = 

o,?$ - -5 a@ 4Y 

p=rJ -- 2(1 -v) ’ az p=iJ = 2(1-v)’ (2.4) 

Functions @I and Op, can thus be considered known as a result of the 

solution of the Neumann problem for a half-space. 

We then turn to conditions (2.3) and from these obtain the function 

l The corresponding problem for the case of an internal circular crack 
covering the region B = 0 was solved by M. Ia. Leonov [ 1.2 1. 
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9 = (1 -2v)(P$-aJ 

solving the Dirichlet problem for the half-space 

(2.5) 

A$=O, qJi+o = 0, (i)I@ZZ = -&(5%X i-y~~*)p=x (24 

Finally, the remaining conditions UJ 1 plo = 0, uz 1 pzR = u (a, (6) , 
after the substitution of values of a,, = (1 - 2v)@ - $, lead to the 
mixed boundary conditions for harmonic function Q3: 

03 !++I = 0 (2.7) 

A method for the solution of problems with mixed boundary conditions 
(2.7) is given in the following Section. 

3. Example. As an example we will investigate the case when external 

loading is represented by two normal concentrated loads P acting in 
opposite directions, applied at points a = ao, 6 = + R, (f, = 0, (Fig. 2). 

As the external shear stresses are equal to zero, then according to 
(2.4) and (2.6) 4 &?*=I&= 0, + (l- 2 Y ) @, and the problem is re- 

duced to solving for one harmonic function in half-space (0 3 @3 under 
following boundary conditions 

@ Ip-_fi = 0, 

aa, 
az @En =e(a, ‘~1 

An effective solution of similar mixed problems 
the aid of the Yehler-Fock integral transformation 

(Xi) 

can be obtained with 
[3 1. 

Indeed. if we assume 

@=rchafcos@ 5 

a, 

cos mp, 
s 

A, (T) s P_,,,+c (ch a) ds (3.2) 

where P,,’ (L) are the associated Legendre functions, then the first con- 
dition (3.1) will be satisfied. and the second condition wiI1 lead to 
the equation 

cb 

q(a,cpf=--. -t(cha-ifA 5 cos mgr \ A, (~1 “_+,+E (ch a) do (3.2) 

m=f) ii 

According to the Yehler-Fock conversion formula, we find 
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x 

A, (7) := $ (- 1) m+‘~ th XT s cos mcp drp % --S 
0 

0) 

s ata. 9) 
x ” (ch a - 1 )i” 

p _xTE (ch a)shada (m21) 

(3.4) 
Fig. 2. 

With I = 0, the last expression contains a factor l/2. 

For the case in question of a concentrated load we easily obtain 

T th XTP_,,,TE (ch a,,) (3.5) 

Thus function @ is given by the following expression 

s th IFI 
X ch sh bp+,~,~ (ch a,) P_++~ (ch a) d7 (3.6) 

0 

(the sign ’ at the summation symbol indicates that the zero member of the 

series has the factor l/2). 

Using integral representation [4 1 

(- l)fflP_tll+_~ (ch a) P_QE (ch a,,) vsh a sh a, = 

as well as expansion 15 1 

1 

1/-Z (ch u - cos q) 
= $ 3 Qm_,,(chu)cosmcp 

T?I=0 

we can get the solution in a closed form 

@= -&otg[$~‘$~o;;;:S”,] 

p = V (Z - b)Z + y” f 22 

(3.7) 

(3.8) 

(3.9) 
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Let us also give the expression for stresses in the mid-section I = 0, 

r < a: 

(ch a, - 1) chz I/% a 
chacha,+1--shasha,coscp (3.10) 

4. Antisymmetric problem+. In this case we have to investigate 
the elastic equilibrium of the upper half-space under boundary conditions 

Ujp=fJ = &=o =o, %n&=r; = TX&, y), zyz ;a=* = -fy (a, ‘p) (4.3) 

qp=o = 0, %18=rr = g(a, cp) (4.2) 

Through a special choice of two additional boundary conditions, this 
problem also can be reduced to separated boundary problems (Dirichlet, 
Neumann or mixed) for four harmonic functions in half-space. 

However, there are some additional difficulties. When systematically 
using the methods of Sections 2-3, one of the boundary conditions is 
satisfied to the order of one plane harmonic term.CDnsequently, a plane 
harmonic function containing unknown coefficients to be defined sub-, 
sequently so as to satisfy all the conditions of the problem has to be 
introduced into the solution from the beginning. 

Also, when carrying out the computation, some of the functions appear- 
ing on the right-hand side of the boundary conditions do not converge to 
zero as a + 00, and therefore do not decompose into a Mehler-Fock integral**. 
'Ihis difficulty can be overcome by introducing 'specialS solutions of 
Laplace's equation 

f(a,f3, y)= l/ch a + COSP~*~~@ 5 fm thm-$ueimi (4.3) 

discontinuous on the line of separation of 
(a = 00 1. 

In conformity with the above, we choose 
the following form: 

m=o 

the boundary conditions 

tm additional conditions of 

l 

.* 

A similar oroblea for an internal crack has been solved by V.I. Mossa- 
kovskii [ 6 1, however he has considered a particular type of an ex- 

ternal load, that would be expanded into a series in angle 4 and con- 

taining a finite number of terms. 

A similar condition arises also in more complicated mixed problems of 

the theory of elasticity, where one also has to sake use of the tYPe 

of solution (4.3) (see paper [ 3 1, where case a = 1. relevant to the 

contact problem is investigated). 
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F IBE = Re i F,,,rmeimq, 
m=o . 

@II,=,= 0 (4.4) 

where FI are as yet unknown coefficients. 

Then, from (4.11, th ere immediately follow the separate boundary con- 

ditions for the harmonic functions @I and 4: 

Ql[p=o = I E) am1 3 
4(1-v) ax p=o' aZ p=x= 2(1--v) (4.5) 

@zIg=o = 
1 aF amz TY 

4(1-v) ay p=o ’ --XT pen= 2(1-v) (4.6) 

Considering aI and 4 as known, from (4.2) for the harmonic function 

*get 
L2(1--v)cD,--CD, (4.7) 

and boundary conditions 

aa 
-0 -z pq - 

am 
37 +n I = 0 (a, p) + (x s + Y$)~_-~v(% + -$+)_ (4.8) 

lbus the derivation of function o is reduced to the solution of the 

Neumann problem for the half-space. 

From the additional condition (4.51, using (4.71, for the harmonic 

function $ we obtain 

q,=, == (1 - 2v)oIp=x - (~~zx + Y~y*)+x (4.9) 

'lbe second boundary condition for this function can be obtained by 

applying operator a*/aG+ a2/ay* to equation (4.41, rewritten as follows*: 

CD, (pzo >= Re $J F, [I - eJ] rmeimq + const 
m=l 

(4.10) 

Considering that O,, = d@O/az, we get 

c%P, / a2 j+o = 0 (4.11) 

and subsequently function QU can be obtained by means of the Mehler-Fock 

* Note that function @g is generally defined within an additive con- 

stant. 
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integral transformation (Section 3). 

Note, that if function Q0 is now defined by equation* 

(Do = s cB& (4.12) 
m 

then for 6 = 0 its value will generally be different from the right-hand 
side of (4.10) by some harmonic function of variables K and y. Let us 
show that by a judicious choice of coefficients Fm we can satisfy condi- 
tion (4.10). Let us assune 

tRk = f&f@ + CD&’ (k = 1, 2, 3, 4) (4.13) 

and let us define functions Qk (0) , containing coefficients F ** 

For QI(') andQi2(') we have the following boundary conditions: 

4(1 - Y) Q),(O) jfjGO = Re i 2 rnFmrm-lei(m-l)o, am (0) 

m=l 
e lpa = 0 

Applying the M#er-Fock transformation, we can obtain the following 
expression for aI : 

and a similar value for Gz (of* 

Further from (4.81 we find for o(O) = 2(1- u) @3(O) --:$(') 

* If integral (4.12) diverges, then function Q. must be obtained from 
the values of its first derivatives. 
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Here 

I.- .- sh f cc (sh2 $ a -[- 1 -.- Zv) J3c 2 my,l’, lhm -: a@’ (4.16) 
m=1 

*rn22" 

7 -- 

(m- 1)!' 
m (2nz - Zj! (4.17) 

Using the usual method based on the htehler-Fock expansion, as well as 

particular solutions of type (4.3), we find 

o,(n) = (0 
* L - 

where 
, 61 (4.18) 

- 8za l/z (1 - v) o* -- l/ch a + cos Fcos $ ff llo i mE,,~, 111” f aeimv (4.19) 
WI=1 

87~2 1/2; (I- Y) ((., -= (I- 2v) l/ch a + cm ji- s$$f$- x 

and the integrals in (4.20) can be expressed in explicit form. 

Now let us define function lb,(a) from conditions 

and noting that o* F_a = 0, a;- l’irO =I 0, we inmediately get 

G$’ z (I--2v)O-p _A;0 

where A* is as yet an arbitrary constant. 

(4.22) 

Investigation of the behavior of displacement VJ at Q + - shows that 

for the continuity of w at o + = it is necessary* to assume A* = - 1. 

It remains to compute the value of the integral 

1 CI,, dz Is+, :- \ ((4 -2~) O -- CO*] dz !p_n + { @;dz (4.23) 
ar Q) cn f<=:,, 

and equate it to the right-hand side of equat%on (4.10). 

l Displacements u and v at a + 00 are continuous for any Value of A*. 
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In succession we obtain 

where Cn are known numbers. 

Substituting (4.24) through (4.26 into (4.101, we finally obtain 

which completes the general solution of the problem. 

5. Example. Let two normal, concentrated, equally directed loads P 

(along the z-axis) be applied at points a = ao, P = 2 II, 4 = 0 (Fig. 3). 

2 

,“b --\ 

-t- -- ‘-f- --N-3 

-+-c , P 

b-b-! 
Fig. 3. 

Asr =rY= x 0, it follows 

Q’ = rD)2’ = 0, 04’ = (I--2v) w’ 

and for the function o’ the boundary conditions are: 

(5.1) 

Evidently the solution of the Neumann problem for this concentrated 
load is the function 

Thus, to find the coefficients Cm, it suffices to expand the function 

s (dz I P) lp,O” 
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into a trigonometric series in angle $. 

Using the familiar relation 

In I/r” - 2br cos ‘p -k bi - -- i ( i)m F -f- const (5.3) 

m-1 . 

from (4.26) and (4.27) we immediately obtain 

F, = .- 
(I-2Y) P 

TC (2 -- v) mb”’ 
(ma 1) (5.4) 

Now functions @ (‘1 @ to), @ co) and $, to) 

Osee equations (4. :51, ’ (4fl6) to3(4. 221 1 . 4 
can be considered known 

Below is the formula for the stress distribution in the mid-section 

z=O. r<a: 

; .= x -t- iY 
_L- 

6 

In conclusion let us note that the method suggested can be applied to 

the solution of the corresponding problems for an infinite elastic body 

weakened by an internal circular crack under most general external loading 

conditions. 
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